Abstract

2.5D packages that utilize an interposer capable of fine patterning are gaining prominence for applications that require high data transmission rate, wide I/O bus, and higher integration of functionality. There are various interposer materials proposed such as silicon, glass, and organic. Silicon has high thermal conductivity compared to glass and organic. The authors studied thermal performance of Si interposer flip chip plastic ball grid array (FCPBGA), glass interposer FCPBGA and conventional multi chip module (MCM) FCPBGA assuming that a high power logic chip and a low power memory chip are packaged in each package configuration. Computational fluid dynamics (CFD) was used to analyze thermal performance of each package with the variation of heat dissipation configuration - lidless, lidded and heat sink attached on lid. The effects of airflow rate and power consumption of logic chip were also analyzed in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.