Abstract

Annealing effects on hole and electron mobility in dual-channel structures consisting of strained Si and Si1−yGey on relaxed Si1−xGex layers (x=0.3/y=0.6, and x=0.5/y=0.8) were studied. Hole mobility decreases sharply, but electron mobility is quite immune to annealing conditions of 800 °C, 30 min or 900 °C, 15 s. The hole mobility decrease is more severe in dual-channel structures with higher Ge contents. Hole mobility degradation is a direct result of Ge outdiffusion from the Si1−yGey layer, and the resulting decreased Ge content. Ge diffusion preferentially towards the Si1−xGex buffer layer, rather than the Si cap layer, is a reason that electron mobility is highly immune to such annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call