Abstract

Ultra-high areal density for hard disk drives requires a stable head disk interface at a flying height lower than 8 nm. At such a low flying height, small flying height variations may cause slider/disk contacts. Slider/disk contacts can also occur when a write-current is applied to the write coil since the flying height between slider and disk can be affected by the thermal expansion of the pole tip. In this paper, we investigate the vibration characteristics of sliders during thermally induced contacts using laser Doppler vibrometry. We perform a parametric study of contact events using disks with different surface roughness and lubricant thicknesses, and analyze the slider motion statistically. For a given write current, we observe that the slider vibrations increase with disk roughness and lubricant thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.