Abstract

We explore the effect of thermal inhomogeneity on the performance of a Brownian heat engine by considering exactly solvable models. We first consider a Brownian heat engine which is modeled as a Brownian particle in a ratchet potential moving through a highly viscous medium driven by the thermal kick it receives from a linearly decreasing background temperature. We show that even though the energy transfer due to kinetic energy is neglected, Carnot efficiency cannot be achieved at quasistatic limit. At quasistatic limit, the efficiency for such a Brownian heat engine approaches the efficiency of endoreversible engine η = 1 − √T c /T h [F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)]. Moreover, the dependence of the current, the efficiency and the coefficient of performance of the refrigerator on the model parameters is also explored via Brownian dynamic simulations and analytically. We show that such a Brownian heat engine has a higher performance when acting as a refrigerator than when operating as a device subjected to a piecewise constant temperature [M. Asfaw, M. Bekele, Eur. Phys. J. B 38, 457 (2004), M. Asfaw, M. Bekele, Physica A 384, 346 (2007)]. Furthermore, for a Brownian heat engine driven by a piecewise constant temperature, we show that systematic removal of the inhomogeneous medium leads to a homogeneous medium with a uniform temperature where the effect of temperature inhomogeneity is replaced by an effective load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call