Abstract

Thermal hydrolyzed sludge filtrate (THSF) rich in biodegradable organics could be a promising external carbon source for biological nutrient removal (BNR). The use of THSF can effectively reduce wastewater treatment plants operating costs and recover bioresources and bioenergy from the waste activated sludge. In this study, the effect of THSF on the BNR process was investigated using a lab-scale anaerobic/anoxic/oxic (A2/O) system. Total nitrogen (TN) and total phosphorus (TP) removal efficiencies of 74.26 ± 3.36% and 92.20 ± 3.13% at a 0.3% dosing ratio were achieved, respectively. Moreover, 20.42% of the chemical oxygen demand (COD) contained in THSF contributed to denitrification, enhancing nitrogen removal efficiency from 55.30 to 74.26%. However, the effluent COD increased by approximately 36.80%, due to 18.39% of the COD contained in THSF discharged with effluent. In addition, the maximum denitrification rate was approximately 16.01 mg N g VSS-1 h-1, while the nitrification rate was not significantly affected by THSF. Nitrosomonas, a common chemoautotrophic nitrifier, was not detected after the introduction of THSF. The aerobic denitrifier Rubellimicrobium was stimulated, and its relative abundance increased from 0.16 to 3.03%. Moreover, the relative abundance of Dechloromonas was 3.93%, indicating that the denitrifying phosphorus removal process was enhanced. This study proposes an engineering application route of THSF, and the chemical phosphate removal pretreatment might be a means to suppress the phosphate recirculation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.