Abstract

AbstractPoly(ε‐caprolactone) (PCL) nanocomposites were prepared using two different types of organically modified nanosilicates by melt intercalation with an internal mixer. Dynamic mechanical analysis revealed possible structural changes in the nanocomposites even during the small deformation occurring during shear oscillatory measurements, as evidenced by a V‐shaped modulus change in the plot of the dynamic storage modulus as a function of stepwise increased temperature. X‐ray diffraction patterns were recorded at different simulated temperatures during the various stages of dynamic measurements. The X‐ray data indicate that the structural changes can be ascribed to a further intercalation of the PCL matrix chains into the silicate layers. This further intercalation is a consequence of the heat treatment during the dynamic mechanical measurements. Furthermore, there is a considerable vertical shift in addition to the horizontal shift in the higher temperature regime, which allows the mapping of a master curve through the application of the time‐temperature superposition principle to the dynamic storage and the loss modulus data obtained at various isothermal temperatures. The present study is also concerned with the relative molecular mobility of both PCL nanocomposites in the given experimental conditions considering the Williams‐Landel‐Ferry (WLF) equation and the Arrhenius relationship between the horizontal shift factor and the activation energy of flow. Moreover, the extent of the vertical shift as a function of temperature made it possible to determine the apparent activation energy of the further intercalation of PCL into the silicate layers. This intercalation is caused by the additional exposure to heat during the dynamic mechanical measurements after mixing, which led to a comparison of the relative diffusivity of the PCL matrix in the two nanocomposites.Dynamic shear storage moduli G′ of PCLOC25A and PCLOC30B as a function of temperature with increase increments of 20 °C from 60 to 260 °C. The G′ data were obtained from isothermal frequency sweep G′(ω) data at ω = 1 rad · s−1 at the corresponding temperatures.magnified imageDynamic shear storage moduli G′ of PCLOC25A and PCLOC30B as a function of temperature with increase increments of 20 °C from 60 to 260 °C. The G′ data were obtained from isothermal frequency sweep G′(ω) data at ω = 1 rad · s−1 at the corresponding temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.