Abstract

The temperature-dependent materials properties on the dry sliding wear resistance of the detonation sprayed Ni-20%Cr coating have been studied. In-situ high-temperature X-ray diffraction (HT-XRD) was used to investigate high-temperature properties such as stress relieving, recrystallization, and thermal expansion. The dry sliding wear test was performed by using a ball-on-disc tribometer by sliding velocities (0.1 m/s), varying loads (6 N and 10 N), and temperatures (25 °C and 850 °C) against alumina (Al2O3) ball. The phase evolution, thermal expansion, crystallite size, and lattice strain were determined by the Williamson-Hall method. Field emission scanning electron microscopy and a non-contact optical profilometer was used to characterize the wear scar and calculate the wear rate. The wear test results demonstrated that the as-deposited coatings coefficient of friction (CoF) and wear rate (ω) continuously decreased as the temperature increased. The primary wear mechanism changed from abrasive and surface fatigue to adhesive and oxidative wear. The impact of stress relieving, recrystallization, and forming a composite tribolayer (Cr2O3, NiO) at elevated temperatures reduced the friction and enhanced the wear resistance. The effect of stress relieving, recrystallization, thermal expansion, and oxidation on the wear resistance of the coating has been discussed with a suitable mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call