Abstract

The high content of sodium in coal ash can induce severe ash deposit problems on heated surface. Vermiculite has been investigated to solve this problem in drop-tube furnace recently. In this work, the effects of vermiculite and perlite on appearances, inorganic mineral transformation, elemental composition change and Na capture efficiency of ash deposit were investigated. The results show that the molten deposit obtained by drop-tube furnace at 1373 K was transformed into weakly-condensed deposit and strongly-sticky deposit respectively when vermiculite and perlite were added separately. Vermiculite has a better effect on improving the ash deposition than perlite. The mechanism of alleviating the ash deposition by vermiculite and perlite is proposed as follows: (1) The interaction between ash particles is inhibited due to the combination reactions of thermal expansion additive particles with coal ash particles. (2) The coal ash particles attach to the surface and the gap of thermal expansion additive particles, forming a porous structure. (3) With vermiculite added, Mg2SiO4 (forsterite) increases the fusion point of ash deposit. NaCa2Mg4Al(Si6Al2)O22(OH)2 (pargasite) and Mg1.8Fe0.2SiO4 (forsterite ferroan) result in the weak viscosity of ash deposit. (4) With perlite added, silicate and sodium aluminosilicate in perlite react with coal ash to produce a large amount of amorphous substance, which can flow downwards to make the bottom deposit molten and lead to the strong viscosity of total deposit. (5) Vermiculite has a strong capacity for Na capture at 1023 K, and perlite has a strong capacity for Na capture at 1373 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call