Abstract
Based on a non classical plate theory, an analytical model is proposed for the first time to analyze free vibration problem of partially cracked thin isotropic submerged plate in the presence of thermal environment. The governing equation for the cracked plate is derived using the Kirchhoff’s thin plate theory and the modified couple stress theory. The crack terms are formulated using simplified line spring model whereas the effect of thermal environment is introduced using thermal moments and in-plane forces. The influence of fluidic medium is incorporated in governing equation in form fluids forces associated with inertial effects of its surrounding fluids. Applying the Galerkin’s method, the derived governing equation of motion is reformulated into well known Duffing equation. The governing equation for cracked isotropic plate has also been solved to get central deflection which shows an important phenomenon of shift in primary resonance due to crack, temperature rise and internal material length scale parameter. To demonstrate the accuracy of the present model, few comparison studies are carried out with the published literature. The variation in natural frequency of the cracked plate with uniform rise in temperature is studied considering various parameters such as crack length, fluid level and internal material length scale parameter. Furthermore the variation of the natural frequency with plate thickness is also established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.