Abstract

Transient natural convection in a porous wavy-walled cavity filled with a nanofluid has been studied numerically. The domain of interest is bounded by vertical flat and horizontal wavy walls having constant temperatures. The unsteady governing equations formulated in dimensionless stream function and temperature, within the Darcy–Boussinesq approximation and the mathematical nanofluid model proposed by Tiwari and Das in the presence of thermal dispersion with corresponding initial and boundary conditions have been solved numerically using an iterative implicit finite-difference method. The main objective is to investigate the effect of the dimensionless time, thermal dispersion parameter and solid volume fraction parameter of nanoparticles on the fluid flow and heat transfer characteristics. Results are presented in the form of streamlines, isotherms and distributions of the average Nusselt number at the bottom wavy wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.