Abstract

Low-Ag content SnAgCu solder has drawn more and more researchers’ attention due to the low cost. In this paper, the effect of 0.1 wt% nano-Al particles on interface reaction between Sn1.0Ag0.5Cu and Cu substrate was investigated, and the growth of intermetallic compounds (IMC) and mechanical property of solder joints during − 55 to 125 °C thermal cycling were also analyzed. The results show that the Cu6Sn5 IMC formed at the as-soldered interface and grow obviously with the increase of thermal cycling. The growth rate of IMC in the SnAgCu–0.1Al/Cu is lower than that of SnAgCu/Cu, which indicates that the nano-Al particles can inhibit the diffusion coefficient of IMC layers. Moreover, the shear force of two kinds of solder joints decrease during thermal cycling, but the shear force of SnAgCu–0.1Al is higher than that of SnAgCu.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.