Abstract
Colloidal 4-ethynylstyryl and octyl cocapping silicon quantum dot (4-Es/Oct Si QD) and its spin-coated film were synthesized and fabricated at three different curing temperatures, 150, 250, and 350 °C under argon for 4 h. Thermal cross-linking of 4-ethynylstyryl-terminated 4-Es/Oct Si QD during the curing process was confirmed by differential scanning calorimetry for the 4-Es/Oct Si QD powder and by Fourier transform infrared spectroscopy for the Si QD thin films. The effect of thermal cross-linking of 4-ethynylstyryl capping groups on the electronic coupling between Si QDs in Si QD solids of thin film states was investigated by monitoring optical and electrical properties of the Si QD thin films at different curing temperatures. The valence-band spectra of 4-Es/Oct Si QD thin films obtain from high-resolution photoemission spectroscopy at 130 eV showed the shift to lower binding energy as curing temperature increases from 150 to 350 °C. The optical bandgap values estimated from the extinction-coefficient...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.