Abstract

Interfacial structure plays a great role in solder joint reliability. In solder joints on Cu, not only is Kirkendall voiding at the solder/Cu interface a concern, but also the growth of interfacial Cu–Sn intermetallic compounds (IMCs). In this work, evolution of microstructure in the interfacial region was studied after thermal aging at 100–150 °C for up to 1000 h. Special effort was made during sample preparation to reveal details of the interfacial structure. Thickness of the interfacial phases was digitally measured and the activation energy was deduced for the growth of Cu 3Sn. Kirkendall voids formed at the Cu/Cu 3Sn interface as well as within the Cu 3Sn layer. The thickness of Cu 3Sn significantly increased with aging time, but that of Cu 6Sn 5 changed a little. The interfacial Cu 3Sn layer was found growing at the expense of Cu 6Sn 5. Evolution of the interfacial structure during thermal aging is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.