Abstract

Bone defects caused by cancer resection often require postoperative radiotherapy. Although various synthetic polymers have been introduced as graft materials, their biological behavior after radiation exposure remains unclear. Here, we investigated how polycaprolactone/hydroxyapatite (PCL/HA) implants respond to therapeutic radiation exposure (in terms of volume and bone regeneration). Four 8mm diameter calvaria defects were surgically created on the parietal bone of 6 rabbits. PCL/HA implants made of porous, solid, and hybrid polymers were grafted by random placement in each defect. The fourth defect was left untreated. Four weeks after surgery, radiation exposure was conducted weekly for 6 weeks (total: 48Gy). Micro-computed tomography and histologic analysis were performed at 3 and 6 months, and 6 months postradiation, respectively. The total augmented volumes of all implants showed no significant differences between 3- and 6-months postradiation computed tomography images. In histologic analysis, new bone areas were 0.45±0.11mm2, 2.02±0.34mm2, and 3.60±0.77mm2 in solid, hybrid, and porous polymer grafts, respectively. Bone regeneration was limited to the periphery of the defect in the hybrid and porous polymer grafts, whereas new bone formed inside the porous implant. The total augmented volume of the defect was maintained without significant absorption even after radiation exposure. The PCL/HA implant maintained its structure despite radiation exposure. The porous PCL/HA implant demonstrated excellent bone regeneration, followed by the hybrid and solid implants. The PCL/HA implant is a promising candidate for bone defect reconstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.