Abstract

Ethyl acetate is an important chemical, and ethanol dehydrogenative condensation with 95.6% atomic economy is a promising synthetic route. CuZrO-based catalysts are widely applied in this reaction; however, the effect of the ZrO2 crystal phase in the CuCeZrO catalyst upon reaction deserves to be explored further. Herein, the ZrO2 crystal phase in the CuCeZrO catalyst was regulated by controlling the calcination temperature, and a high temperature (≥600 °C) is conducive to the transformation of the tetragonal phase to the monoclinic phase. Additionally, monoclinic ZrO2 (m-ZrO2) with limited density of the strong base is found to be more beneficial to the selective production of ethyl acetate from ethanol, while tetragonal ZrO2 (t-ZrO2) with abundant strongly basic sites is more inclined to the formation of butanol and its downstream esters. This work not only improves our understanding of the crystal phase effect in a CuCeZrO catalytic system but also paves the way for the development of more efficient catalysts for ethyl acetate production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.