Abstract

Results of numerical and experimental investigations of a high-velocity flow in a plane channel with sudden expansion in the form of a backward-facing step, which is used for flame stabilization in a supersonic flow, are presented. The experiments are performed in the IT-302M high-enthalpy short-duration wind tunnel under the following test conditions: Mach number at the combustor entrance 2.8, Reynolds number 30 · 106 m−1, and total temperature T0 = 2000 K, i.e., close to flight conditions at M = 6. The numerical simulations are performed by solving full unsteady Reynolds-averaged Navier–Stokes equations supplemented with the k–ω SST turbulence model and a system of chemical kinetics including 38 forward and backward reactions of combustion of a hydrogen–air mixture. Three configurations of the backward-facing step are considered: straight step without preliminary actions on the flow, with preliminary compression, and with preliminary expansion of the flow. It is demonstrated that the backward-facing step configuration exerts a significant effect on the separation region size, pressure distribution, and temperature in the channel behind the step, which are the parameters determining self-ignition of the mixture. The computed results show that preliminary compression of the flow creates conditions for effective ignition of the mixture. As a result, it is possible to obtain ignition of a premixed hydrogen–air mixture and its stable combustion over the entire channel height.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.