Abstract

This study investigated the effect of the vertical position of the canine on changes in the frictional/orthodontic (F/O) force ratio of nickel-titanium (Ni-Ti) archwires during the initial levelling phase of orthodontic treatment. Frictional and orthodontic forces were measured by using low-friction brackets and Ni-Ti archwires with three different cross-sectional sizes and force types. To simulate canine malocclusion (first premolar extraction case), the upper right canine was displaced gingivally by 1 to 3 mm and the inter-bracket distance between the upper right lateral incisor and second premolar was set at 15 mm or 20 mm. A three-point bending test was performed to measure the orthodontic force of each Ni-Ti archwire. Frictional forces were measured with a universal testing machine and dental arch models by pulling parallel to the end of the archwire at a crosshead speed of 0.5 mm/min. F/O force ratio was calculated and analysed statistically. At a displacement of 3 mm, few archwires had F/O force ratios of less than 1.0, at which orthodontic force overcame frictional force, thus ensuring extrusion of the canine. For effective tooth movement, orthodontists should use Ni-Ti archwires with an F/O force ratio of less than 1.0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.