Abstract

BackgroundDetermining the appropriate gross tumor volume is important for irradiation planning in addition to palliative radiation for bone metastases. While irradiation planning is commonly performed using simulation computed tomography (CT), magnetic resonance imaging (MRI), bone scintigraphy, and 18fluorodeoxyglucose-positron emission tomography-CT (18FDG-PET-CT) are more sensitive for detecting bone metastasis and invasion areas. Therefore, this study evaluated whether pretreatment imaging modalities influenced the response to palliative radiation therapy (i.e., the irradiation effect) for painful bone metastases from solid malignant carcinomas.MethodsConsecutive patients with painful bone metastases treated with palliative radiation between January 2013 and December 2017 at our institution were included. We retrospectively investigated the pretreatment images from the different imaging modalities (CT, MRI, bone scintigraphy, and 18FDG-PET-CT) obtained between 1 month before and the initiation of palliative radiation and determined the primary site of carcinoma, histological type, metastatic lesion type (osteolytic, osteoblastic, or mixed), pathological fracture, and metastatic site (vertebral or not). We then evaluated the relationship between these factors and treatment response. We defined “response” as the condition in which patients achieved pain relief or reduced the use of painkiller medicines.ResultsIn total, 131 patients (78 men and 53 women) were included; the median age was 66 years (range, 24–89 years). Prescribed doses were 8–50 Gy/1–25 fractions with 2–8 Gy/fraction. Among the 131 patients, 105 were responders (response rate, 80%). The imaging modalities performed before irradiation were CT in 131 patients, MRI in 54, bone scintigraphy in 56, and 18FDG-PET-CT in 14. The Welch t-test and chi-square test showed no significant association between treatment response and each factor. Multiple logistic regression analysis including the imaging modality, metastatic site, and pathological fracture also showed no significant association with each factor.ConclusionsThere was no significant relationship between the type of pretreatment imaging and treatment response for painful bone metastases. Thus, setting the appropriate radiation field according to CT images and clinical findings could help avoiding further image inspection before palliative radiation for painful bone metastases.

Highlights

  • Determining the appropriate gross tumor volume is important for irradiation planning in addition to palliative radiation for bone metastases

  • In Japan, three-dimensional conformal radiotherapy (3D-CRT) with contouring target volume based on simulation computed tomography (CT) is the most commonly used treatment planning method, as stereotactic body radiotherapy (SBRT) for bone metastasis is not covered by the Japanese insurance system

  • We believe that magnetic resonance imaging (MRI) is sensitive for determining bone metastatic lesions; the effect of palliative RT, especially Three-dimensional conformal radiotherapy (3D-CRT), in clinical situations is not well known, especially considering the use of radiation planning with or without MRI or other functional imaging, bone scintigraphy, and 18fluorodeoxyglucose-positron emission tomography (18FDG-Positron emission tomography (PET))/CT, all of which are sensitive for bone metastases [6, 7]

Read more

Summary

Introduction

Determining the appropriate gross tumor volume is important for irradiation planning in addition to palliative radiation for bone metastases. Studies have shown the usefulness of using magnetic resonance imaging (MRI) scans to determine the gross tumor volume (GTV) that should be treated with palliative RT for bone metastases [4, 5]. We believe that MRI is sensitive for determining bone metastatic lesions; the effect of palliative RT, especially 3D-CRT, in clinical situations is not well known, especially considering the use of radiation planning with or without MRI or other functional imaging, bone scintigraphy, and 18fluorodeoxyglucose-positron emission tomography (18FDG-PET)/CT, all of which are sensitive for bone metastases [6, 7]. The addition of further examinations including MRI, bone scintigraphy, and 18FDG-PET/CT results in delays in starting RT and increases the cost

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call