Abstract
AbstractThe effect of addition of unmodified (CNa+) and modified (C30B and C20A) montmorillonites on the performance of polycaprolactone (PCL) based nanocomposites prepared by melt intercalation was studied. The study covers morphological and thermal aspects, mechanical and barrier properties and also biodegradability, which are important for packaging applications. Particular effort was made to find the main characteristics of the clays responsible for the final clay dispersion degree inside the nanocomposite. The most hydrophobic reinforcement (demonstrated by water adsorption tests) also showed the strongest thermal stability (shown by thermogravimetrical analysis) and the larger basal spacing (calculated by X‐ray diffractometry (XRD)), which were the main characteristics that led to the best clay dispersion degree inside the PCL matrix (demonstrated by XRD and Transmission Electron Microscopy (TEM)). The findings demonstrate that a biodegradable polymer/clay nanocomposite with enhanced mechanical, impact, and barrier properties was obtained. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.