Abstract

AbstractThe transgenerational effect of elevated atmospheric CO2 concentration (e[CO2]) on low temperature response in wheat is still little investigated, through the interaction of e[CO2], and low‐temperature stress has been reported in a single generation. Here, the low temperature‐induced modifications of chloroplast ultrastructure and carbohydrate metabolism in wheat after four generations continuously grown under ambient CO2 concentration (a[CO2]) and e[CO2] (2014–2018) were investigated. The results indicated that the transgenerational exposure to e[CO2] increased the number of grana lamellae and the amounts of osmiophilic lipid droplets, attenuating the negative effect of low temperature on chloroplast ultrastructure. The transgenerational e[CO2] enhanced the activities of antioxidant enzymes (i.e. SOD, POD and CAT) and concentrations of osmotic substances (i.e. proline and soluble sugar), which alleviated the low temperature‐induced oxidative damage to the chloroplast ultrastructure. In addition, transgenerational exposure of wheat to e[CO2] increased activities of vacInv and cwInv, while decreased fructokinase activity, which affected the sucrose metabolism in wheat leaf. These findings elucidated that transgenerational exposure to e[CO2] could improve low temperature tolerance of winter wheat, which provide novel insights to the response of wheat to future climate change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.