Abstract

We recently demonstrated photodriven quantum teleportation of an electron spin state in a covalent donor-acceptor-radical (D-A-R•) system. Following specific spin state preparation on R• with a microwave pulse, photoexcitation of A results in two-step electron transfer producing D•+-A-R-, where the spin state on R• is teleported to D•+. This study examines the effects of varying the time (τD) between spin state preparation and photoinitiated teleportation. Using pulse electron paramagnetic resonance spectroscopy, the spin echo of D•+ resulting from teleportation shows a damped oscillation as a function of τD that is simulated using a density matrix model, which provides a fundamental understanding of the echo behavior. Teleportation fidelity calculations also show oscillatory behavior as a function of τD due to the accumulation of a phase factor between ⟨Sx⟩ and ⟨Sy⟩. Understanding experimental parameters intrinsic to quantum teleportation in molecular systems is crucial to leveraging this phenomenon for quantum information applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call