Abstract
In the present work, the effects of (i) Ti replacement by Hf and (ii) the synthesis method on microstructure and crystal structure evolution in the high-entropy alloy HfxTi(1−x)NbVZr are reported. The results of scanning electron microscopy and X-ray diffraction analysis of alloys prepared by both arc-melting and induction-melting are compared with theoretical thermodynamic calculations using the CALPHAD approach. The non-equilibrium thermodynamic calculations agree well with the experimental observations for the arc-melted alloys: a mixture of body-centered cubic (BCC) and cubic C15 Laves phases occurs for low-Ti-concentration alloys and a single BCC phase is obtained for high-Ti alloys. The agreement is not as good when using the induction-melting method: equilibrium solidification calculations predict that the most stable state is a phase mixture of BCC, hexagonal close-packed, and a cubic C15 Laves phase, while experimentally only one BCC and one hexagonal C14 Laves phase were found. The estimation of the exact cooling rate and the lack of a thermodynamic database can explain the difference. In addition, for both methods, the thermodynamic calculation confirms that for a high Ti concentration, the BCC phase is stable, whereas phase separation is enhanced with a higher Hf concentration.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.