Abstract

In this work, we investigated the influence of the synthesis method of Ni-based CeZr catalysts on their physico-chemical and catalytic properties in the hydrogenolysis (HDO) of glycerol with H2 in-situ produced by the aqueous-phase reforming (APR). Conventional impregnation method involved surface nickel deposition (NiCeZr-IM). The one-pot methods, which involved nickel embedment into CeZr lattice, included sol-gel (NiCeZr-SC) and coprecipitation (NiCeZr-CA and ultrasound-assisted NiCeZR-CS) methods. Differences in textural, structural, morphological, redox, and surface properties, together with and catalytic performance in the glycerol APR-HDO, were investigated systematically. As well, spent catalysts were deeply characterized. There were notable differences among textural properties, which significantly affected their activity in glycerol conversion. The structural characterization confirmed the successful integration of Ni into the CeZr lattice, especially for the catalysts synthesized using one-pot methods. One-pot synthesized catalysts showed stronger Ni-CeZr interaction, which affect the reducibility. The catalysts prepared by coprecipitation contained the highest metal-to-acid ratio, making them very active for C-O bond hydrogenation. Post-reaction characterization discloses a leaching of the nickel, in greater amount for both coprecipitated catalysts. This study revealed the potential of Ni-based catalysts derived from subsurface insertion of nickel into the CeZr matrix for the hydrogenolysis of glycerol without external hydrogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.