Abstract

This work describes the synthesis of nickel/lanthanum hexaaluminates (NiO/LHA), optimizing the LHA synthesis method, as well as their performance in terms of stability and catalytic activity in the dry reforming of methane (DRM). The synthesis methods studied include co-precipitation, nitrate decomposition and freeze drying, using a La/Al molar ratio of 1:11 in all methods. Drying methods, namely oven drying (4 h at 353 K), vacuum drying (8 h at 353 K) + oven drying (2 h at 423 K) and heat treatment (12 h at 473 K) + oven drying (2 h at 373 K), were also optimized during selection of the final catalyst support. After calcination at 1473 K for 2 h, the presence of lanthanum aluminate (LaAlO3) and traces of LHA were found in all cases. Specific surface areas of 50, 32 and 30 m2/g were obtained for the samples AD1 (nitrate decomposition), FD1 (freeze drying), CP1 (co-precipitation).The nitrate decomposition method was selected and optimized to obtain the LHA structure at low temperature in the presence of Ni(II), using a La/Al/Ni molar ratio of 1/15/0.2. The results showed the formation of pure-phase hexaaluminate at 1473 K. The solids obtained were used as supports for nickel catalysts (10 wt%) for DRM at 973 K. The supports and catalysts were characterized by X-ray diffraction (XRD), N2 adsorption at 77 K, temperature-programmed reduction (TPR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The simulation of the TPR patterns of the catalysts allowed determining the type of metal support interaction and the activation energy of the system as well as the rest of the kinetic parameters. A cumulative mean activation energy of 100.7 kJ/mol was determined for the catalysts. The metallic morphologies, dispersion and distribution of NiO on the surface of the LHA support were analyzed considering a theoretical simulation of the reduction profiles, obtaining an average growth factor of 1.4, which indicates that the metallic phase is growing in one and two dimensions. The NiO/LHA catalysts synthesized were found to be active and very stable in the DRM reaction after 20 h of reaction with an average selectivity H2/CO upper than 0.90. The differences observed can be related to the textural properties developed during the optimized nitrate decomposition method.The characterization analysis by simulation, TPR, XRD, TEM, SEM allowed us to establish the effect of the textural properties, the metal interaction, the growth of the nickel grains and their distribution in the support on the catalytic performance in DRM. The better performance was obtained with the catalysts with higher porosity and greater support metal interaction, which allowed obtaining a better distribution of the metallic phase, thus generating less harmful carbonaceous species for the activity of the catalyst and therefore showing the best values of catalytic stability and conversion.Finally, three types of coke were identified from HR-TEM and EDS analysis: graphitic, filamentous and CNT, showing different effects on the catalytic behavior deactivation being the presence of graphitic more aggressive than the other two species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call