Abstract

Fe nanoparticles and branched nanostructures of iron oxide were synthesized by chemical reduction in aqueous phase. The mechanism of formation of iron oxides as a function of the amount of surfactant employed during the synthesis process was studied. Specifically Fe, Fe2O3, and Fe3O4 nanoparticles were obtained. The oxidation of Fe to Fe3O4 and finally to Fe2O3 was carried out by oxidative etching process, decreasing the amount of stabilizer agent. The structures obtained were characterized by high resolution (HRTEM) and scanning/transmission (STEM) electron microcopies, energy dispersive spectroscopy (EDS), and optical spectroscopy (UV‐Vis and IR).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.