Abstract
This work studied a facile and template-free hydrothermal route for controlled synthesis of tungsten trioxide in the form of hexagonal nanorod (h-WO3) and monoclinic nanosheet (m-WO3). The surface morphology, crystal plane, surface bound water, and surface acid sites of the two kinds of WO3 nanocrystals were investigated systematically. They were further evaluated as catalysts for selective cellulose hydrolysis. While both of them exhibited good catalytic performance, h-WO3 was found to be more preferential for ethylene glycol (EG) generation. This catalytic performance relied on both the unique active crystal surface (1 0 0) and surface binding water (WO3-H2O) formed by h-WO3 crystals, which provided more Lewis acid sites for degrading cellulose into EG. Results showed that the highest EG yield reaches 77.5% by a combination of loading 1 wt% Ru on the h-WO3 catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.