Abstract

ABSTRACTThis article presents application of polymer inclusion membranes (PIM) containing polymer matrices: cellulose triacetate (CTA) or poly(vinyl) chloride (PVC), o‐nitrophenyloctyl ether (NPOE) as a plasticizer and phosphonium ionic liquids, i.e., trihexyltetradecylphosphonium chloride (Cyphos IL 101), bis(2,4,4‐trimethylpentyl)phosphinate (Cyphos IL 104) and tributyltetradecylphosphonium chloride (Cyphos IL 167), as carriers for Zn(II) transport from chloride medium. Cyphos IL167 application as an ion carrier in PIMs is reported for the first time. The membrane composition is found to affect Zn(II) transport significantly. SEM and AFM images show the differences in the surface morphology of PVC and CTA based membranes. Better transport abilities of CTA membranes (Zn(II) recovery factors exceed 80%) compared with those of PVC, indicate that the structural differences between the two polymers play a crucial role for the membrane permeability. The best initial flux and permeability coefficient are obtained for the membranes with Cyphos IL 101 and Cyphos IL 104 as carriers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42319.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.