Abstract

The effect of the structural features of hydrochloric acid-deamidated wheat gluten with different degrees of deamidation (DDs) on the susceptibility to enzymatic hydrolysis by pancreatin was investigated. The wheat gluten deamidated by hydrochloric acid with a DD of 55% revealed the highest susceptibility to enzymatic hydrolysis as evaluated by the hydrolysis degree and nitrogen solubility index of the hydrolysates. An increase of peptides with MW below 3000 Da was observed as the DD increased. Raman spectra in the 1740-1800 cm⁻¹ and 521-530 cm⁻¹ range suggested that wheat gluten had taken off the deamidation with different DDs and that the disulfide bond had disrupted the sulfhydryl groups with different intensities, respectively. Results from the deconvolution of the amide I region of FTIR spectra in the 1600-1700 cm⁻¹ range showed that the content of the α-helix decreased and that the content of the β-turn and β-sheet increased with increasing DDs, which improved the molecular structure and flexibility of wheat gluten. A scanning electron microscope (SEM) revealed that the image of HDG-55% presented the smoothest surface and the least uniform pore, enabling the sample to be more susceptible to enzymatic hydrolysis. The above information will enable us to better understand the effect of structure on the susceptibility of deamidated wheat gluten.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.