Abstract

Observing a rotating visual pattern covering a large portion of the visual field induces optokinetic nystagmus (OKN). If the lights are suddenly switched off, optokinetic afternystagmus (OKAN) occurs. OKAN is hypothesized to originate in the velocity storage mechanism (VSM), a central processing network involved in multi-sensory integration. During a sustained visual rotation, the VSM builds up a velocity signal. After the lights are turned off, the VSM discharges slowly, with OKAN as the neurophysiological correlate. It has been reported that the initial afternystagmus in the direction of the preceding stimulus (OKAN-I) can be followed by a reversed one (OKAN-II), which increases with stimulus duration up to 15 min. In 11 healthy adults, we investigated OKAN following optokinetic stimulus lasting 30 s, 3-, 5-, and 10-min. Analysis of slow-phase cumulative eye position and velocity found OKAN-II in only 5/11 participants. Those participants presented it in over 70% of their trials with longer durations, but only in 10% of their 30 s trials. While this confirms that OKAN-II manifests predominantly after sustained stimuli, it suggests that its occurrence is subject-specific. We also did not observe further increases with stimulus duration. Conversely, OKAN-II onset occurred later as stimulus duration increased (p = 0.02), while OKAN-II occurrence and peak velocity did not differ between the three longest stimuli. Previous studies on OKAN-I, used negative saturation models to account for OKAN-II. As these approaches have no foundation in the OKAN-II literature, we evaluated if a simplified version of a rigorous model of OKAN adaptation could be used in humans. Slow-phase velocity following the trials with 3-, 5-, and 10-min stimuli was fitted with a sum of two decreasing exponential functions with opposite signs (one for OKAN-I and one for OKAN-II). The model assumes separate mechanisms for OKAN-I, representing VSM discharge, and OKAN-II, described as a slower adaptation phenomenon. Although the fit was qualitatively imperfect, this is not surprising given the limited reliability of OKAN in humans. The estimated adaptation time constant seems comparable to the one describing the reversal of the vestibulo-ocular reflex during sustained rotation, suggesting a possible shared adaptive mechanism.

Highlights

  • In healthy individuals, vision remains stable during head and body motion

  • The optokinetic afternystagmus (OKAN)-II is observable in the bottom graph: the slow-phase eye velocity (SPEV) reaches zero earlier than in the top graph, becomes negative and continues with a negative sign for a period of time, returning to zero with a decay slower the one observed for OKAN-I

  • The results of the current study confirm that a prolonged optokinetic stimulus increases the probability for OKAN-II to appear, as reported by previous studies [11, 20, 30]

Read more

Summary

Introduction

Stabilization of gaze while moving is achieved through reflexive eye movements that compensate for head motions. These reflexive responses are driven by the integration of several sensory inputs, principally vestibular and visual. While the vestibular system reacts to rapid, high frequency head motions (angular velocity and linear acceleration are directly sensed by the organs in the inner ear), the optokinetic system extracts information on head motion from the observed scene. The optokinetic system is stimulated by any coherent movement of a large portion of the visual scene. To test the optokinetic system in laboratory conditions, the stimulation is usually performed by horizontally rotating a large, patterned drum around a stationary individual. The eyes show a nystagmic response that consists of slow phases drifting in the same direction as the moving stimulus and quick phases in the opposite direction [3]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call