Abstract

Visible light-responsive TiO2 (Vis-TiO2) thin films were successfully developed by applying a radio-frequency magnetron sputtering deposition method by controlling various sputtering parameters such as the substrate temperature, Ar gas pressure, and the target-to-substrate distance. UV–Vis, XRD and SEM investigations revealed that optical property, the crystal structure, and photocatalytic activity of Vis-TiO2 are strongly affected by the sputtering parameters during the deposition step. Vis-TiO2 was found to act as an efficient photocatalyst for the H2 and O2 evolution from water under visible light irradiation (λ ≥ 420 nm). SIMS investigations have revealed that a slight decrease in the O/Ti ratio of the TiO2 thin films plays an important role in the modification of the electronic properties of Vis-TiO2 thin films, enabling them to absorb visible light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call