Abstract

In this work we report theoretical calculations of a superconducting island in a strong vortex confinement regime. The obtained results reveal the evolution of the superconducting condensate with an applied magnetic field, depending on the spatial profile of the electron mean-free path in the sample. The results of this study provide an insight about the emergent superconducting properties under such conditions, using the Ginzburg-Landau numerical simulations where spatial variation of thickness of the island and the corresponding variation of the mean free path, omnipresent in similar structures of Pb grown on Si (111), are taken into account. These results offer a new route to tailor superconducting circuits by nanoengineered mean free path, using for example the controlled ion-bombardment on thin films, benefiting from the here shown impact of the spatially-varying mean free path on the vortex distribution, phase of superconducting order parameter, and the critical fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call