Abstract

Zinc sulfide (ZnS) thin films with variable structural, optical, electrical, and thermoelectric properties were obtained by changing the source-to-substrate (SSD) distance in the physical-vapor-thermal-coating (PVTC) system. The films crystallized into a zinc-blende cubic structure with (111) preferred orientation. The films had a wide 3.54 eV optical band gap. High-quality homogenous thin films were obtained at 60 mm SSD. The sheet resistance and resistivity of the films decreased from 1011 to 1010 Ω/Sq. and from 106 to 105 Ω-cm, when SSD was increased from 20 mm to 60 mm, respectively. The phase and band gap were also verified by first principles that were in agreement with the experimental results. Thermoelectric characteristics were studied by using the semi-classical Boltzmann transport theory. The high quality, wide band gap, and reduced electrical resistance make ZnS a suitable candidate for the window layer in solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.