Abstract

We study the influence of the solvent viscosity in the local irregular intensity fluctuations characteristic of high Fresnel number dye lasers. The relative amplitude of the fluctuations in a flashlamp-pumped dye laser is analyzed, We complete our previous work by using several solvents and different excitation energies above threshold. A decrease of the relative fluctuation amplitude is found as the solvent viscosity or the pumping energy increases. This effect is theoretically analyzed in the framework of the semiclassical Maxwell-Bloch equations, with a model based on the orientation of the dye molecules driven by the laser field in the solvent. These results point out the importance of the orientation of the dye molecules in the intensity fluctuation phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.