Abstract

Rare earth Ce-incorporated MCM-41 mesoporous molecular sieves (CeMCM-41) were synthesized via a direct and nonhydrothermal method at room temperature from sodium silicate and ammonium cerium (IV) nitrate as raw materials. Cetyltrimethyl ammonium bromide (CTAB) was used as a template. The resultant samples were characterized by means of powder X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance ultraviolet–visible spectroscopy (UV–vis) and N 2 physical adsorption, respectively. The effect of the Si/Ce molar ratio on the crystalline structure and textural properties of CeMCM-41 was also investigated. The experimental results show that ordered CeMCM-41 mesoporous molecular sieves were successfully synthesized at room temperature and the resultant mesoporous materials have specific surface areas in the range of 594–1369 m 2/g and average pore sizes in the range of ca. 2.5–2.8 nm. It has been found that the structural properties are strongly related to the amounts of cerium incorporation. When the cerium content increased in the samples, the intensity of the peak (1 0 0) was gradually reduced, and the surface area and structural regularity were diminished.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.