Abstract

The bacterial enzyme RppH initiates mRNA decay by removing pyrophosphate from 5΄-triphosphorylated mRNA. Escherichia coli RppH has promiscuous substrate specificity, but relatively few transcripts are affected by loss of RppH. The phenotypic analysis of the rppH mutant is required for understanding the physiological role of RppH, but the phenotype of the rppH mutant has not yet been determined. In this study, we provide several phenotypes of the rppH mutant associated with envelope integrity. Through phenotype analysis and drug susceptibility testing, we found that the rppH mutant is sensitive to a variety of chemicals including antibiotics, and is also significantly sensitive to envelope stresses, such as osmotic stress, ethanol and sodium dodecyl sulfate. All phenotypes of the rppH mutant were caused by loss of its enzymatic activity. The rppH mutant exhibited increased envelope permeability, compared to wild-type cells. In contrast, an increase of RppH activity significantly inhibited the growth of wild-type cells under low-temperature conditions. In conclusion, various phenotypes of the rppH mutant propose that RppH is associated with regulation of envelope integrity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call