Abstract

Based on ab initio methods and nonequilibrium Green's function theory, we have investigated the electronic transport properties of single and double 1,4-dithiolbenzene molecular devices which have different molecular relative orientations on molecule-metal contacts. Numerical results show that different molecular relative orientations have various influences on the electronic structure of molecules and current-voltage characteristics, which obviously affects the electronic transport properties of metal-molecule-metal systems. The equilibrium state of the extend molecule is not the best situation for electronic transportation. The characteristics of electronic transportation can thus be improved by adjusting the molecular relative orientation on molecule-metal contacts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.