Abstract

To complete the study on the effect of the long-range part of Coulombic interactions on properties of complex polar and associating fluids, we have investigated in detail three compounds with extreme features: acetonitrile for its unusually large dipole moment, hydrogen fluoride with very strong hydrogen bonding, and formic acid for its potential formation of different n-mers in liquid and gaseous phases. The effect of the long-range Coulombic interactions on both the structure and thermodynamics of the homogeneous phase, and on the vapor-liquid equilibria has been examined using the same decomposition of realistic potential models into a short-range part and a residual part as in the previous paper [Kettler, M.; et al. J. Phys. Chem. B 2002, 106, 7537-7546]. The present results fully confirm the previous findings that the properties of polar and associating systems are determined primarily by the short-range interactions regardless of their nature, i.e., contributions arising from the long-range interactions constitute only a small portion of the total properties, and thus that the short-range potential counterpart of full realistic models can be used as a convenient reference for a successful perturbation expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.