Abstract

AbstractIn this study, acrylonitrile–butadiene rubber (NBR) was melt‐mixed with multiwalled carbon nanotubes (MWCNTs). Because the electrical conductivity and mechanical properties of composites are strongly influenced by the filler's state of dispersion and the extent of filler breakage during processing, the processing conditions are very important parameters. The effects of the mixing time, rotor speed, cooling rate, and sulfur concentration on the surface resistivity were investigated. Increasing the rotor speed from 20 to 60 rpm at mixing times of 15 and 30 min led to an increase in the surface resistivity from around 104 to 1011 Ω/square. However, at a mixing time of 7 min, the surface resistivity slightly decreased with increasing rotor speed. When slow cooling was applied, a surface resistivity of 104 Ω/square was obtained at around 2‐phr MWCNTs. However, when the fast cooling was applied, a surface resistivity of 106 Ω/square was obtained at 5‐phr MWCNTs. The tensile strength and tensile modulus at 300% elongation were improved with the addition of MWCNTs into NBR. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.