Abstract

Two-phase flow instabilities have been studied during the past decades. Pressure drop oscillation (PDO) shows a relatively larger amplitude oscillation compared with other instabilities. This oscillation typically occurs when the system has compressible volume and operates in a negative slope region of the pressure drop versus flow rate curve. The characteristics of the PDO has been studied experimentally and theoretically. Even though research has been performed for identifying the characteristics of the PDO, how the PDO affects the heat transfer coefficient (HTC) remain unclear. In this study, the heat transfer coefficient is experimentally studied during pressure drop oscillation. The experiment is conducted with a heated horizontal tube with 5 mm inner diameter and 2.0 meters in length, and the R-134a is used a working fluid. For the cases studied, no significant effect of the PDO on the average heat transfer coefficient was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.