Abstract

We prepared porous bioactive glass (BG) balls with various pore architectures using a modified version of a polymer templating technique which is generally used for the synthesis of mesoporous BG. Sol–gel derived porous BG is an excellent candidate as a graft material for bone tissue regeneration due to its good bone forming bioactivity and biodegradability. The biodegradability is largely related to the pore architecture and affects its biocompatibility. The pore architecture of the BG balls was controllable by changing the reaction time in chloroform. The relationship between the pore architecture of the BG balls and biocompatibility were studied using MC3T3-E1 pre-osteoblast cells in vitro and the rabbit calvarial model in vivo 8 weeks after implantation. The mesoporous BG balls (BG0) and porous BG beads with a hierarchical pore structure on the nano- to microscale (BG0.5 and BG2) showed a good cell proliferation response and differentiation behavior in vitro and in vivo without serious toxicity. These hierarchically porous structures also enhanced osteoconductivity. However, the existence of too many microscale pores in the BG balls (BG24) led to their rapid biodegradation and, consequently, to serious negative effects in vitro and in vivo. The pore architecture of the BG balls greatly influenced their biocompatibility, as well as bone formation, and should be carefully controlled when designing new materials for use in bioapplications. The porous BG balls with hierarchical pores on the nano- to microscale exhibit favorable biocompatibility in vitro and promise excellent potential applications in the field of biomaterials, such as tissue regeneration and drug storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.