Abstract

Measurement of the eye's wave aberrations has become fairly standard in recent years. However, most studies have not taken into account the possible influence of the polarization state of light on the wave aberration measurements. The birefringence properties of the eye's optical components, in particular corneal birefringence, can be expected to have an effect on the wave aberration estimates obtained under different states of polarization for the measurement light. In the work described, we used a psychophysical aberrometer (the spatially resolved refractometer) to measure the effect of changes in the polarization state of the illumination light on the eye's wave aberration estimates obtained in a single pass. We find, contrary to our initial expectation, that the polarization state of the measurement light has little influence on the measured wave aberration. For each subject, the differences in wave aberrations across polarization states were of the same order as the variability in aberrations across consecutive estimates of the wave front for the same polarization conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.