Abstract

The influence of the polarization conditions on growth dynamics and structure of electrolytic zinc dendritic deposits obtained at room temperature from electrolyte with 0.3 mol/l zinc oxide and 4 mol/l sodium hydroxide is studied. The electrodeposition was performed at constant and pulsed current and potential. Constant-current chronopotentiometry was used to determine the surface area of the dendritic deposits in situ. The zinc microstructure was studied with electron microscopy. The deposit surface produced in pulsed current conditions intensively grew during the first 5 minutes of electrolysis and then changed insignificantly. In conditions of potentiostatic electrolysis, the coefficient K, which is the ratio of the deposit surface area to the substrate area, increased linearly with time; in pulsed potential conditions, it increased as a power-law functions. The deposits obtained in potentiostatic conditions show the lowest density that slightly varies with thickness. The density of the deposits crystallized in pulsed current conditions sharply increased upon the completion of active dendrite extension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.