Abstract

Liesegang pattern (LP) is one example of self-organized periodic precipitation patterns in nonequilibrium systems. Several studies have demonstrated that the LP morphology can track physicochemical environmental conditions (e.g., temperature); however, the polarity effect has not been explored to date. In this study, a copper chromate system is used to reveal the impact of solvent polarity on the evolving LP structure using water/organic solvent mixtures. In the typical case of using water/dimethyl sulfoxide (DMSO) mixtures, two drastic changes in LP morphology with increasing DMSO contents were found: (i) increasing frequency of the original structure and (ii) formation of a hierarchical pattern with the appearance of another, lower-frequency structure. Furthermore, the simulation model operating with a bimodal size distribution, allowing both homogeneous and heterogeneous precipitations showed good agreement with the experimental results. Therefore, this study demonstrated that LP can be tailored by solvent polarity and can be used for designing hierarchical precipitation patterns in a straightforward manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.