Abstract
The development of thermal filamentation (TF) instabilities in a current-carrying plasma shell under the action of the plasma self-radiation was analyzed in terms of a small perturbation theory. A stationary collisional radiative model was used to calculate the parameters of the bremsstrahlung, recombination radiation, and spectral line radiation. It has been shown that radiative losses can either enhance or weaken the growth of TF instabilities. The pattern of the effect is governed by the dependence of the energy lost by the plasma due to radiation, Q Rad, on the plasma temperature T. If Q Rad increases slower than ∼T, the radiative losses enhance TF instabilities. In the opposite case, that is when Q Rad increases faster than ∼T, the radiative losses lead to suppression of TF instabilities. When the energy lost due to radiation is greater than the Joule energy input, TF instabilities can be completely stabilized due to radiation. The plasma parameter ranges for which stabilization of TF instabilities may occur due to radiation have been found for aluminum and argon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.