Abstract
The pituitary pars tuberalis (PT) is a glandular zone exhibiting well-defined structural characteristics. Morphologically, it is formed by specific secretory cells, folliculostellate cells, and migratory cells coming from the pars distalis. The purpose of this work was to investigate differences in specific cellular characteristics in the PT of viscachas captured in summer (long photoperiod) and winter (short photoperiod), as well as the effects of chronic melatonin administration in viscachas captured in summer and kept under long photoperiod. In summer, the PT-specific cells exhibited cell-like characteristics with an important secretory activity and a moderate amount of glycogen. In winter, the PT-specific granulated cells showed ultrastructural variations with signs of a reduced synthesis activity. Also, PT showed a high amount of glycogen and a great number of cells in degeneration. After melatonin administration, the ultrastructural characteristics were similar to those observed in winter, but the amount of glycogen was higher. These results suggest possible functional implications as a result of morphological differences between long and short photoperiods, and are in agreement with the variations of the pituitary-gonadal axis, probably in response to the natural photoperiod changes through the pineal melatonin. The ultrastructural differences observed in PT, after melatonin administration, were similar to those observed in the short photoperiod, thus supporting the hypothesis that these cytological changes are induced by melatonin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.