Abstract

The nanoparticles suspended in a shear flow are subjected to a shear lift force, which is of great importance for the nanoparticle transport. In previous theoretical analysis on the shear lift, it is usually assumed that the particle temperature is equal to the temperature of the surrounding gas media. However, in some particular applications, the particle temperature can significantly differ from the gas temperature. In the present study, the effect of particle temperature on the shear lift of nanoparticles is investigated and the corresponding formulas of shear lift force are derived based on the gas kinetic theory. For extremely small nanoparticles (with radius R < 2 nm) or large nanoparticles (R > 20 nm), the influence of the particle temperature can be neglected. For the intermediate particle size, the relative error induced by the equal gas-particle temperature can be significant. Our findings can bring an insight into accurate evaluation of the nanoparticle transport properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.