Abstract

Li4SiO4 was obtained by using quartz powder of different particle sizes (75–180 μm, 45–75 μm, 38–45 μm, and <38 μm) and Li2CO3 as raw materials through a solid-state reaction at 720 °C. X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential thermal analysis and thermogravimetry (DTA/TG) were used to examine the sintering behavior and properties of the samples. The results indicated that when the particle size of the quartz powder decreased, the solid-state reaction performed more completely, the content of the Li4SiO4 phase increased, and the size of the grain agglomerates decreased gradually. The enhanced chemical reactivity of the quartz powder with Li2CO3 and the shortened diffusion distance as the quartz size decreases are helpful to the formation of the Li4SiO4 phase. The sorption analysis revealed that the samples synthesized using the quartz powder with smaller particle sizes experienced a more rapid absorption–desorption process with a higher absorption efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.