Abstract

Treatment conditions (oxidation, number of activation procedures) of a polymer template based on poly(ethylene terephthalate) track-etched membranes (PET TeMs) on the efficiency of the electroless deposition of copper, the structure of the synthesized copper nanotubes, and their catalytic activity in the liquid-phase reduction of p-nitrophenol are studied. It is shown that oxidative premodification contributes to an increase in the catalytic activity of the composite membrane by 20% compared with a sample synthesized in accordance with the standard procedure (etched PET TeM, single activation). In addition, it is found that the repeated implementation of the sensitization and activation stages leads to an increase in the reaction rate constant by 35 and 15% in the case of the etched and oxidized membranes, respectively. The properties of the catalysts in the temperature range of 16–35°C are studied; the activation energy Ea is calculated. The lowest Ea value is obtained for a sample synthesized in an unmodified matrix: electroless deposition into the polymer template without additional oxidative modification makes it possible to synthesize composite catalysts exhibiting relatively low catalytic activity; however, membranes of this type remain active in five test runs (p-nitrophenol conversion and reaction rate constant decrease by 26 and 44%, respectively).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call