Abstract
In this paper, the effects of optical power factors like laser power, the powers of the laser beams in the two arms of the optical system, and the power of the photodetector on laser-linewidth measurements are studied. From the experiments, it can be found that when the average optical input power for the photodetector is about 50% of its linear saturation power, the measured laser line width is a minimum. When the optical powers of the laser beams in the two arms are equal in short-delay self-homodyne system, the measured laser line width is narrowest. In the low output power range of the laser, its line width decreases with the increase in optical power. By comparing experiments, it can also be clear that the conventional measurement method is seriously affected by different noise types, which causes the measured line width to become wider and not change even if the laser linewidth changes. However, based on the short-delay coherent envelope method, the measured coherent envelope changes significantly when the laser line width changes slightly, and its corresponding laser-linewidth values are also clearly visible. It confirms the low noise and high resolution of the short-delay self-homodyne coherent-envelope laser-measurement method. The outcomes of this study can provide helpful information for precision ultra-narrow laser-linewidth measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.