Abstract

AbstractIn a free-running climate model, DJF tropical–extratropical teleconnections are assessed and compared to observed teleconnections in reanalysis data. From reanalysis, the leading mode of covariability between tropical outgoing longwave radiation (OLR) and Northern Hemisphere extratropical geopotential height (Z500) is identified using maximum covariance analysis (MCA). This mode relates closely to the El Niño pattern. The GCM captures the tropical OLR well but the associated extratropical Z500 less well. The GCM climatology has an equatorward shifted North Pacific jet bias. We examine whether the difference in the teleconnection pattern is related to the GCM’s jet bias. In both a ray-tracing analysis and a barotropic model, this jet bias is shown to affect the Rossby wave propagation from the tropical Pacific into the North Pacific. These idealized model results suggest qualitatively that the MCA difference is largely consistent with linear Rossby wave dynamics. While the basic state has a larger effect on the North Pacific MCA, a Rossby wave source (RWS) bias in the Caribbean has a larger effect on the North Atlantic MCA. The North Pacific jet bias is also proposed to affect the downstream propagation of waves from North America into the Caribbean, where it affects tropical RWS and the triggering of secondary waves into the North Atlantic. We propose that climatological biases in the tropics are one underlying cause of the jet bias. Our study may also help understand the results of other climate models with similar jet biases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call